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The onset of Karman-vortex shedding is studied experimentally in the wake of different 
two-dimensional bluff bodies, namely an oblong cylinder, circular cylinders and plates 
of rectangular cross-section. Different control measures, such as wake heating, 
transverse body oscillations and base bleed are investigated. As the steady-periodic 
Karman shedding has previously been identified as a limit-cycle, i.e. as self-excited 
oscillations, the experiments are interpreted in the framework of the Stuart-Landau 
model. The coefficients of the Stuart-Landau equation for the characteristic vortex 
shedding amplitude, i.e. the linear temporal growth rate, linear frequency and the 
Landau constant, are fully determined for the two cylinders and in part for the plate. 
For this purpose transients are generated by suddenly switching transverse body 
oscillations or base bleed on or off. The analysis of these transients by a refined method 
based on complex demodulation provides reliable estimates of the model coefficients 
and yields an experimental validation of the concept that a global instability mode 
grows or decays as a whole. Also, it is demonstrated that the coefficients of the 
Stuart-Landau equation are independent of the experimental technique used to 
produce the transients. 

1. Introduction 
Over the last decade, the research on vortex shedding from bluff bodies has received 

new impulses from the theory of hydrodynamic instability. The concept of local 
absolute and convective instability in particular, pioneered by Briggs (1964) in the 
context of plasma instabilities, has proved useful in shear flows. The initial ideas about 
the possible connection between local absolute instability (Pierrehumbert 1984; Koch 
1985 ; Huerre & Monkewitz 1985) and self-excited or time-amplified global oscillations 
of the entire near wake have been refined in a series of papers (Triantafyllou, 
Triantafyllou & Chryssostomidis 1986; Monkewitz & Nguyen 1987; Chomaz, Huerre 
& Redekopp 1988; Monkewitz 1988; Karniadakis & Triantafyllou 1989; Ohle & 
Eckelmann 1992; Noack 1992; Noack & Eckelmann 1994). To put the connection 
between local and global behaviour on a firm mathematical basis Huerre & Monkewitz 
(1990), Chomaz, Huerre & Redekopp (1991), Hunt & Crighton (1991), Soward (1992), 
Monkewitz, Huerre & Chomaz (1993) and Le Dizes et al. (1993, 1994) have used 
asymptotic methods based on the assumption that the streamwise evolution of the base 
flow is slow on the scale of a typical instability wavelength. 

This development of asymptotic theories, however, would have remained rather 
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academic without the experimental discovery of Mathis, Provansal & Boyer (1984) and 
Provansal et al. (1987) that Karman-vortex shedding is indeed a limit-cycle oscillation 
of the near wake, resulting from a time-amplified global instability. They showed that 
the wake dynamics could be described by a single Stuart-Landau (SL) equation (Stuart 
1971; see also $2) by measuring all coefficients of the SL-equation for a range of 
Reynolds numbers near the onset of Karman shedding. Guided by the SL-model, 
Mathis et al. designed for this purpose the first successful transient experiments, which 
consisted of measuring the response of the wake to an impulsive change of the free- 
stream velocity. Since then, experiments of this type have been repeated and refined by 
Sreenivasan, Strykowski & Olinger (1986), Strykowski & Sreenivasan (1990) and 
Schumm (1991) for the wake and by Raghu & Monkewitz (1991) for a heated jet. 

The present paper is based on Schumm’s thesis (1991) and gives extensive and more 
complete results, including SL-coefficients, for three different two-dimensional bluff 
bodies: an oblong cylinder, a circular cylinder and a blunt-based plate. To obtain the 
coefficients of the SL-equation by transient experiments, some means of control is 
required. In the following, we present results associated with control by variation of 
Reynolds number, wake heating, base bleed or suction and forced transverse cylinder 
oscillations. However, only the last two methods are used to produce transients by 
suddenly switching the control on or off. Other control measures not considered here 
include suppression of vortex shedding by splitter plates (Roshko 1954a, b), forcing by 
pulsating jets near the separation lines (Williams, Mansy & Amato 1992) and by 
rotational oscillations of the cylinder (Tokumaru & Dimotakis 1991). All the above 
control measures fall into the categories of ‘ steady modifications of boundary 
conditions’ or ‘ open-loop forcing’. The effectiveness of the former measures has been 
firmly linked to changes in the degree of absolute instability in the near wake, with a 
sufficient reduction thereof leading to the suppression of vortex shedding (Monkewitz 
& Nguyen 1987; Huerre & Monkewitz 1990; Yu & Monkewitz 1990; Monkewitz 
1993). The mechanism of vortex-shedding control by open-loop forcing, on the other 
hand, has so far eluded a general explanation. A third type of control, ‘feedback or 
closed-loop control’, is beyond the scope of this paper. In the wake, it has been 
explored experimentally by Berger (1964, 1967), Ffowcs Williams & Zhao (1989), 
Monkewitz, Berger & Schumm (199 l), Roussopoulos (1993 a, b) and has been 
modelled theoretically by Monkewitz (1989). 

In $2, we briefly summarize the concept of local absolute instability, linear global 
modes and the SL-equation. In addition, a refined data reduction technique is 
described which yields improved estimates of the SL-coefficients. In $3  the different 
control measures are related to the stability-theoretical ideas of $2 and in $ 9 4 6  we 
discuss the results pertaining to the oblong piezoceramic cylinder, the circular cylinder 
and the blunt-based plate, respectively. In the conclusions, the relation of the present 
measurements of SL-coefficients to analytical work is assessed. 

2. Theoretical models for the evolution of Karman vortex shedding 
2.1. Global instability and the Stuart-Landau model 

When considering the stability properties of a two-dimensional streamwise evolving 
flow, the so-called locally parallel approach is commonly used. For this, one takes the 
local mean velocity profile at a fixed streamwise location and considers the stability of 
a hypothetical parallel flow of infinite streamwise extent with a velocity profile equal 
to the selected local profile of the non-parallel flow. Obviously the selection of 
streamwise location for the locally parallel analysis is arbitrary and hence the 
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connection between the local analyses and the ‘true’ instability of the non-parallel flow 
remains unclear. In the context of linear stability this true instability is referred to as 
‘global mode’. It is simply a generalized time-harmonic solution (allowing for 
temporal growth or decay) of the governing equations, linearized around a non- 
parallel basic flow, say, U ( x , y )  in two dimensions. That is 

U(x, y ,  t) = U(x, y )  + C(x, y )  exp (- iw, t )  + O(lC12)), (1) 
where wG is the complex global frequency. Depending on the sign of the imaginary part 
of oG, the global mode is stable [Im(oG) < 01 or unstable [Im(w,) > 01. Under the 
assumption that a typical instability wavelength h is much shorter than the distance 2 
over which the basic flow changes significantly, i.e. that A / 2 ’  = c << 1, and that there is 
no long-range pressure feedback such as in edge-tone phenomena, Huerre & 
Monkewitz (1990), Chomaz et al. (1991), Soward (1992), Monkewitz et al. (1993) and 
Le Dizes et al. (1993, 1994) have shown that local absolute instability over some 
streamwise interval of the non-parallel flow is necessary for global instability. These 
analyses also imply that a disturbance, generated by a localized initial impulse, takes 
of the order of c1 times the period 27c/Re(w,) of the instability wave to evolve into the 
mode shape l i(x,y) of the most unstable linear global mode. This latter evolution is of 
course only relevant if it takes place before nonlinear effects become important. 

When considering nonlinear effects we can restrict ourselves, as shown by Mathis et 
al. (1984) and Provansal et al. (1987), to the case of a supercritical Hopf bifurcation 
(Stuart 1971), i.e. to the case when a linearly unstable global mode evolves continuously 
into limit-cycle oscillations. In this situation it is always possible to slow down the 
saturation process by positioning oneself sufficiently close to the linear global stability 
boundary. Near this boundary it is therefore meaningful to consider the evolution of 
an initial impulse in a non-parallel flow as a ‘two-step’ process: the first step consists 
of the impulse evolving into the most unstable linear global mode by the process of 
selective amplification, assuming that the ‘critical’ mode grows much faster than all the 
‘higher’ global modes. The second step involves a period during which the linear global 
mode as a whole grows exponentially at the rate Im(w,), followed by nonlinear 
saturation (see the recent analysis by LeDizks et al. 1993). For this scenario it is clear 
that, as soon as the linear global mode is established, the dynamics can be described 
by a single characteristic amplitude A(t), associated with the fundamental frequency 
component, which satisfies an SL-equation near the onset of Kirrnan-vortex shedding, 

- = [a, + iai] (P) A - [I, + ili] IAI2 A + O(lA15). (2 a)  
dA 
dt 

In this equation, P represents a bifurcation parameter such as the Reynolds number 
Re. The above concepts are broadly supported by the fully non-parallel stability 
analysis of the wake by Noack (1992), Ohle & Eckelmann (1992) and Noack & 
Eckelmann (1994) who developed a low-dimensional Galerkin model for the wake 
dynamics. 

As discussed by Stuart (1971), the balance of terms in (2a) requires that the linear 
growth rate a, be small of order O(lAlz) for a supercritical bifurcation, i.e. for 1, > 0. 
Hence the ‘distance from criticality’ [P-P,,] has to be of order O(lA12)), where P,, is 
defined by a,(P,,) = 0, and it is consistent to approximate the coefficients in (2a) by 

a, = [P-  <,I [da,/dPI (PJ + W P -  pCrl2), 
gi = Vi(P,r) + [P-P,,I [dVi/dPI (P,,) + O(IP-P,,I2), 

[lr+ili] = [l,+ili](P,,)+O(IP-P,,I). 
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The coefficient (cr,+icri) is thereby independent of location and I is the first Landau 
'constant'. From (2a) the saturation or limit-cycle amplitude for P > P,, is immediately 
obtained as 

Introducing the modulus and phase of A into (2a) finally leads to 

IAl,,, = [41,1$ = {[dC,/dPl (P,A/l,P [P- &,I:. (3) 

I A I 2/ I A I,",,), 

The introduction of lAlsat in the above expressions pertains to the case P > P,, and 
serves to show that only the ratio Z J I ,  is a true constant, independent of the location 
where A is measured, since it is related to the nonlinear frequency shift. I ,  itself does 
depend on spatial location and corresponds to the saturated global mode shape 
f i (x ,y )  via equation (3). 

The relations (4a) and (4b) show that the instantaneous growth rate IAI-'dlAl/dt 
and the instantaneous frequency da/dt are linear functions of the square of the 
instantaneous amplitude IAI2 (t). This allows a good error estimate of previous growth 
rate measurements typically obtained at amplitudes as large as half the saturation 
amplitude. Beyond this, the relations (4) can be used, as described below, to obtain 
improved values for the coefficients cr and 1 and, as a consequence, a more precise 
identification of the stability boundary P,,. 

So far no mention has been made of three-dimensional effects that have been the 
subject of much recent research by, among others, Gerich & Eckelmann (1982), 
Ramberg (1983), Williamson (1989, 1994), Eisenlohr & Eckelmann (1989), Hammache 
& Gharib (1991) and Albarede & Monkewitz (1992). The main point is that, given 
enough time, the end conditions have an influence over the entire span even of very 
long bluff bodies. In particular they determine the shedding angle and the long-time 
limit of the saturation frequency for Reynolds numbers below the transition to 
'turbulence' (around 200 for the circular cylinder). For our purposes, the key word is 
'given enough time'. As shown by the experiments of Williamson (1989) and the model 
of Albarede & Monkewitz (1992) the vortex shedding during a start-up is always two 
dimensional. It takes a finite time, which is proportional to the length of the cylinder, 
until the initial two-dimensional state at, say, the centre of the span 'feels' the end 
conditions. Hence, for the transient experiments in particular we do not have to 
concern ourselves with these three-dimensional effects. This claim is supported by flow 
visualization in $ 6 .  

2.2. The processing of transient data 
For the present and most previous experiments the output of a single hot wire 
measuring the streamwise disturbance velocity has been chosen to characterize the 
global mode dynamics. The only practical requirement for the sensor is that it be 
placed in a region where the signal amplitude is not too small compared to the 
maximum amplitude and where probe interference is not a problem. For the wake this 
means that the probe must be placed sufficiently far downstream of the region of 
absolute instability, i.e. certainly downstream of the recirculating region. In some 
cases, however, a probe location in the unsteady potential flow, well to the side of the 
near wake, may also be appropriate. 

Since the equations (4) pertain only to the fundamental frequency component, a raw 
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transient representing the growth and saturation of a global mode must first be band- 
pass filtered. For all the present results the transients A,,,(t) were recorded on an 
HP 3562 Dynamic Signal Analyzer in time-capture mode. The signal was then filtered 
in the spectral domain. For this, the pass-band of the window BP ( f )  was in all cases 
centred on the Karman-shedding frequency fK with a width of Af % fK and a cosine 
taper over 0.15Af on each side. The FFT of the real filtered signal was hence obtained 
as A”, = BP cf> x FFT (Ar,,). 

Next, the problem of experimentally obtaining instantaneous growth rates and 
frequencies in a reliable fashion was approached by building the ‘complex’ amplitude 
(A,+iA,)(t) from the measured real signal Ara,(t). The real part is thereby simply the 
band-pass filtered signal A, = FFT-l (A”,), while the imaginary part A,  of the signal can 
be identified in the standard fashion with the Hilbert transform of A ,  which, in the 
spectral domain, amounts to multiplying each FFT component by (-i). Hence we 
have 

At = FFT-l (-iA”,), ( 5 )  

and the time derivatives of IAl = [A: + A$ and a = tan-’ (A, /A, )  in (4a) and (4b) can 
be evaluated by finite differences. In practice, the raw transients A,,, are contaminated 
by noise and it is clear that the instantaneous experimental growth rates 1Al-l dlAl/dt 
and frequencies da/dt determined in this fashion are only reliable where the signal-to- 
noise ratio is significantly above unity, i.e. at finite amplitudes. However, the growth 
rates and frequencies can easily be extrapolated to their values cr, and cr, at infinitesimal 
amplitudes by fitting equations (4a) and (4b) to the data. The normalized Landau 
constant (ZJlr), on the other hand, is obtained from the difference between the 
extrapolated linear frequency gi and the frequency of the saturated limit cycle. As will 
be demonstrated in $4, this procedure leads to significant improvements of the SL- 
coefficients near the onset of Karman vortex shedding. Further away from critical 
conditions it is the only promising method to analyse short transients which saturate 
in a few periods (see also Raghu & Monkewitz 1991). The more reliable coefficients are 
then used to test the ‘two-step’ scenario proposed above by comparing the dynamics 
at different spatial locations. 

3. Methods for controlling Karman vortex shedding in the near wake 
With steady-periodic data only the relation (3) for the saturation amplitude can be 

verified. Hence one has to carry out transient experiments to fit the SL-model (2) to 
experimental data. This requires a control mechanism by which vortex shedding can be 
significantly reduced or suppressed in a stable manner under supercritical conditions 
P > P,, or can be stimulated when P < P,,, i.e. when the natural wake is stable. Turning 
off the controller then allows the natural shedding to grow and saturate or the 
stimulated shedding to decay. In practice, a control mechanism, besides being 
reasonably simple to implement, has to satisfy several criteria in order to yield 
meaningful transients : 

(i) For the instability to evolve on the ‘proper’ basic flow, the controller should not 
induce significant changes of the mean flow. 

(ii) The ‘switch-off time’ of the controller has to be small compared to the e-fold 
growth- or decay-time of the transient. At the same time, switching the actuator on or 
off should not cause significant disturbances. 

(iii) For P < P,, the controller has to induce vortex shedding with a frequency 
corresponding to the subcritical conditions. 
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In the following we discuss the control mechanisms which are used in the present 
experiments relative to the above requirements and highlight the connection with local 
stability properties. 

3.1. Change of Reynolds number 

The control method of choice in the past (Mathis et al. 1984; Sreenivasan et al. 1986; 
Provansal et al. 1987) has been the modification of the Reynolds number, i.e. impulsive 
changes of the free-stream velocity. The connection with the theoretical model of $2 
has been established in detail by Monkewitz (1988), who showed how an increase in 
Reynolds number correlates with an increase in both the size of the region of local 
absolute instability in the near wake and in the magnitude of the maximum absolute 
growth rate. This method of producing wake transients satisfies the requirements (i) 
and (ii) reasonably well, although there appear to be problems with (ii) when reducing 
the Reynolds number from a supercritical to a subcritical value Re < Recr (see 
Sreenivasan et al. 1986). When producing decaying transients, the method is also 
problematic because the frequency corresponding to the initial supercritical Reynolds 
number is arbitrarily imposed on the final subcritical state, thus violating (iii). 

3.2. Control wire 

The technique, proposed by Strykowski & Sreenivasan (1990), consists of introducing 
a thin control cylinder with a diameter of typically to of the primary cylinder and 
parallel to it into the wake. The most effective location for suppression of vortex 
shedding is generally in the shear layers bordering the mean recirculation region. 
Strykowski & Sreenivasan (1 990) have shown numerically that experimentally observed 
suppression of vortex shedding corresponds to a globally damped wake. The effect of 
the control cylinder on local stability properties, however, can only be speculated upon. 
It is likely that it is primarily the breaking of the mean flow symmetry which is 
responsible for the reduction of absolute instability. This control technique is not 
suited to produce transients, as none of the criteria (it(iii) can be satisfied. We mention 
it here because it has a bearing on the placement of the heating wire in the recirculation 
region (see $53.3 and 5). 

3.3. Wake heating 
It has been noted in the past (Noto, Ishida & Matsumoto 1985; Mori, Hijikata & 
Nobuhara 1986) that Kirman vortex shedding can be suppressed by heat addition to 
the near wake. The connection of this effect to local stability properties was 
investigated by Yu & Monkewitz (1990) who argued that the primary effect of heating 
was to reduce the density of the near wake, which in turn decreased local absolute 
growth rates. The issue is not entirely settled, though, as Lecordier, Hamma & 
Paranthoen (1991) suggest that the modification of Reynolds number by the heating is 
at least equally important in gaseous media. In 5 5  we report a few results pertaining 
to the saturation amplitude as a function of heat input, but again, the technique is 
unsuitable for the generation of transients because of thermal inertia. 

3.4. Base bleed 
Another well-known method for the suppression of vortex shedding from bluff bodies 
consists in bleeding fluid from the blunt base (Wood 1964, 1967; Bearman 1967). 
Again, the connection between suppression and local stability properties is given by the 
fact that absolute instability in the near wake is reduced very effectively by reducing or 
eliminating reverse flow (Monkewitz & Nguyen 1987; Monkewitz 1988). Base bleed 
control to produce experimental transients has been implemented for the first time by 
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Hannemann, Lynn & Strykowski (1986). The idea is to suppress vortex shedding 
completely at some supercritical Reynolds number by base bleed, which is then shut off 
impulsively by a solenoid valve. This technique has been further developed by Schumm 
(1991) and has been supplemented by ‘base suction’ which is ideally suited to induce 
global instability at normally subcritical Reynolds numbers, as shown in $6 for 
rectangular plates. Within limits, all the criteria (ik(iii) can therefore be satisfied easily. 

3.5. Forced cylinder vibrations 
The use of forced cylinder oscillations for the reduction or suppression of KQrman- 
vortex shedding was first proposed by Berger (1964, 1967) and Wehrmann (1965) and 
has been perfected by Schumm (199 1). The method uses small-amplitude transverse 
cylinder osillations, with displacements of a few percent of the cylinder diameter. The 
most effective suppression of vortex shedding was found for a harmonic forcing 
frequency of around 1.8 times the natural shedding frequency. As opposed to all the 
previous control measures which represented steady modifications of the boundary 
conditions, the control is achieved by open-loop forcing. The effect can therefore no 
longer be explained in terms of local stability properties that change in response to a 
modified basic flow, but is most probably the result of nonlinear interactions between 
the natural global instability and the forcing input. However, we know of no analysis 
to support this hypothesis. 

The technique has proved particularly successful with an oblong piezoceramic 
cylinder for which all the requirements ( i t@) can be ideally satisfied, as demonstrated 
in the next section. 

4. The wake of an oblong piezoceramic cylinder: control by forced 
transverse oscillations 

4.1. Experimental set-up 

For the following experiments the original oblong cylinder of Berger (1964, 1967), with 
a thickness D = 0.69 mm, a chord of 1.68 mm and a length L = 70 mm has been used. 
As shown in figure 1, it was mounted across the nozzle (diameter 100 mm) of a small 
open-return wind tunnel with a measured turbulence level of 0.2 YO in the free stream. 
The cylinder was made of piezoceramic material (used for gramophone styli) strung 
onto three very thin piano wires, which provided high torsional stiffness, and allowed 
us to tune its mechanical natural frequency. The two sides of the cylinder parallel to 
the free stream were coated with electrodes connected to binding posts via the ‘V- 
struts’ visible on figure 1 (b). By applying a sinusoidal voltage across the electrodes, the 
fundamental transverse bending mode of the cylinder could be excited. The fact that 
the resulting displacement was not constant along the span did not seem to have a 
discernible influence on the experiments (owing to the mounting on longer wires, any 
twisting of the cylinder was prevented and the amplitude at the ends was still about half 
the amplitude at the centre). This piezoceramic cylinder, which has also been called 
‘bimorph transducer’, has turned out to be ideally suited for transients as it is highly 
damped after the excitation is turned off. This is demonstrated in figure 2 which shows 
the hot-wire signal at ( x / D ,  y / D )  = (10,l) for a supercritical Reynolds number of 83 
(Re,, = 79.2) together with the voltage across the cylinder electrodes. As long as the 
forcing signal at 560 Hz is applied, the vortex shedding with a saturated frequency of 
3 13 Hz is completely suppressed, as evidenced by the corresponding power spectrum. 
When the excitation is turned off, the cylinder acts as a transducer and the trace of 
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(a) 

FIGURE 1. (a) Schematic of the oblong piezoceramic cylinder. (b )  Photograph of its mounting 
across the nozzle of the wind tunnel. 

figure 2(b) provides an estimate of about 20 ms for the time constant of the structural 
damping. At the same time the KBrman vortex shedding starts building up and finally 
saturates. During this transient, the power spectrum shows no remnant of the 560 Hz 
forcing frequency. 

4.2. Results 
First, the dependence of the saturation amplitude on Reynolds number is compared on 
figure 3 with the relation ( 3 )  obtained from the SL-equation, where the generic 
parameter P is replaced by Re. Here and in the following, the amplitude of the global 
Karman mode is characterized by the streamwise velocity oscillation at ( x / D ,  y / D )  = 
(10, l), unless noted otherwise. The fit of ( 3 )  to the data on figure 3 shows a close 
proportionality between IAlsat and (Re- Re,,): and yields a value for the critical 
Reynolds number of Recr = 79.2. To verify that the forcing at around 1.8 times the 
natural shedding frequency does lead to a globally stable wake, the saturation 
amplitude has been investigated as a function of forcing amplitude A, at three fixed 
supercritical Reynolds numbers, where A, is measured at the centre span using 
stroboscopic illumination and a telescope. The results in figure 4 again show the 
square-root dependence (3) of lAlsat on the control parameter, in this case (A,-Af, .Cr),  
which is indicative of a Hopf bifurcation. In addition we find from figure 4 the critical 
forcing amplitude as (A, ,cr /D) N 0.008(Re- Recy). With this we have demonstrated 
that the forcing has a stabilizing effect on the global Karmin mode. 

The study of saturation amplitudes does, however, not allow the determination of 
individual constants of the SL-equation. For this purpose, transient experiments have 
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FIGURE 2. (a) Raw hot-wire record of supercritical transient at (x/D,y/D) = (10,l) for the oblong 
cylinder at Re = 83 with power spectra of the suppressed and the saturated state (linear scale). (b) 
Corresponding voltage across the cylinder electrodes. 

been carried out. They are typified by figures 5 and 6, which correspond to supercritical 
and subcritical Reynolds numbers, respectively. Figures 5(a)  and 6 ( a )  show the raw 
transients, while the (b) and (c) parts represent instantaneous growth rate gr and 
frequency aJ2n plotted versus instantaneous amplitude squared, as suggested by the 
SL-model of $2. 

The supercritical transient of figure 5 clearly illustrates the contamination by noise 
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FIGURE 3. Saturation amplitude at ( x / D , y / D )  = (10,l) behind the oblong cylinder versus 
Reynolds number. 
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FIGURE 4. Saturation amplitude at ( x / D , y / D )  = (10,l) behind the oblong cylinder versus amplitude 
of transverse cylinder oscillation at 1.8 times the natural shedding frequency. 0, Re = 81.5, A, 
Re = 83; 0, Re = 89.5. 
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FIGURE 5. Supercritical (Re = 84.5) transient at ( x / D , y / D )  = (10,l) behind the oblong cylinder. (a) 
Raw transient. (b) Instantaneous growth rate versus JAI2 fitted by equation (4u). (c) Instantaneous 
frequency versus IAI2 fitted by equation (4b). 
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FIGURE 6. Subcritical (Re = 74) transient at ( x / D , y / D )  = (10,l) behind the oblong cylinder. (a) Raw 
transient; (b) instantaneous growth rate versus IAI2 fitted by equation (4a). (c) Instantaneous 
frequency versus IAI2 fitted by equation (4b) .  



Self-excited oscillations and their control 29 

at low amplitude and shows the improvement of v, and ai obtained by extrapolating 
the linear relationships (4a) and (4b) from intermediate to zero amplitudes. Figure 5(c) 
furthermore shows how easily the difference between saturation frequency f s a t  
and linear frequency cri/2n is determined which is, according to (4b) ,  equal to 
- (g, Ii/1,)/2n and yields the normalized Landau constant. 

To produce a decaying transient like the one of figure 6 at the subcritical Reynolds 
number of Re = 74, one has to start from a state of forced vortex shedding. This 
immediately raises the question of the ‘correct’ forcing frequency which is, in the case 
of the piezoceramic cylinder, freely adjustable. From the stability ideas of $2 it is seen 
that one has to choose the frequency which yields the minimum linear decay rate. In 
practice it has often been sufficient to take the slope [dai/d(Re)](Re,,) determined at 
supercritical Reynolds numbers and to force at the frequency obtained by extrapolating 
gt to Re < Recr. Once the question of frequency is settled the decaying transient is 
again analysed according to the relations (4) by looking for a range of proportionality 
between instantaneous growth rate or frequency and JAI2. Considering the typical 
example of figure 6 one realized immediately that this procedure is the only reliable way 
to interpret subcritical transients and, in particular, to separate the undesirable switch- 
off transient of the control from the hydrodynamic transient of interest. This is 
illustrated on figure 6 (b) where the (linear) mechanical cylinder oscillations appear to 
decay at a rate around 0.9 and contaminate the data identified by hatching. After the 
noisy data at small amplitudes are also eliminated (left off the graph), only a small 
proportionality range for the extrapolation of a, and vi is left. The same is true for the 
frequency on figure 6(c), where we note in addition that the initial forcing frequency 
should have been chosen somewhat higher in order to be compatible with the forcing 
amplitude, i.e. to avoid the initial rise in frequency. 

Transient experiments of the type shown on figures 5 and 6 have been carried out at 
many different Reynolds numbers between 73 and 97. The results for the normalized 
linear growth rate a,(Re) are compiled on figure 7 .  Figure 7(a)  shows the linear global 
growth rates obtained by extrapolating to zero amplitude as described above. On 
figure 7(a )  the linear relationship (2b) has been fitted individually to the subcritical and 
supercritical data to demonstrate that the two regressions are essentially identical. This 
allows a determination of the critical Reynolds number and g,(Re) with high precision 

Recr = 79.2k0.2, 

cr,D2/v = [0.l16f0.002](Re-ReC,). 

For comparison, the data have also been reduced without the help of our 
extrapolation technique. In this case the raw transients were displayed on a semi- 
logarithmic scale and the slope of the straight-looking part of the envelope was taken 
to be “v,”. The results of this ad hoc procedure are shown on figure 7(b)  and clearly 
reveal a problem near Re,,: with the supercritical data one obtains Re,, N 78.5, while 
the subcritical data yield Recr N 81. This is easily understood with the relation (4a) ;  
as supercritical transients typically ‘look best’ at intermediate amplitudes where 
~ A ~ / ~ A ~ s u t  z f ,  the growth rate is underpredicted by 25%. This corresponds to a 
slope [d”c,”/d(Re)] on the supercritical side of figure 7(b)  which is only 75 YO of the true 
slope on figure 7(a). For the subcritical data, on the other hand, one observes the 
correct slope but a shift to higher damping. This is due to the fact that in our case all 
data points were obtained with a fixed initial forcing amplitude. If the slope is again 
evaluated at a fixed fraction of the initial amplitude, the relation (4a) indeed predicts 
a fixed reduction of growth rate by 1, /A/’ .  

2 F L M  271 
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FIGURE 7. Linear global growth rate for the oblong cylinder versus Reynolds number, with equation 
(2b) fitted to the data: (a) gy obtained by extrapolation to zero amplitude. (b) “a,” determined in the 
conventional manner at finite amplitude. 

Analogous to the linear growth rates of figure 7(a) ,  we obtain the linear frequency 
by extrapolation of the instantaneous frequency to zero amplitude and the normalized 
Landau constant from the difference between saturation frequency and linear 
frequency. The results are displayed on figures 8 and 9, respectively, from which we 
obtain 

gi D 2 / v  = [58.1+0.3] + [0.84+0.01] (Re-Re,,), (6 c) 

1Jlr = - [ 1.85 0.3 51. (6 d )  
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FIGURE 8. Linear frequency for the oblong cylinder versus Reynolds number, with equation (2b)  
fitted to the data. 
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FIGURE 9. Normalized Landau constant 1Jlr for the oblong cylinder versus Reynolds number. 

We observe that the linear relationship (b )  between gi and Re is again followed by the 
data of figure 8 to a high degree of accuracy and that the Landau constant is indeed 
a constant, i.e. does not show any trend up to the highest Reynolds number Re = 97 
we considered. 

Finally, we present the first comprehensive experimental evidence for the ' two-step 
scenario ' at supercritical conditions which stipulates that after a linear global mode is 
established, there is a period where it grows as a whole at the linear global growth rate 
cry before saturation occurs. Hence the concept is verified by comparing growth rates 
at different spatial locations, an approach which has been taken before in the numerical 
experiment of Hannemann & Oertel (1989) and touched upon by Strykowski & 

2-2 
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FIGURE 10. (a) Linear global growth rate for the oblong cylinder versus x / D  at y / D  = 1 and different 
Reynolds numbers. (b) Raw transient at x / D  = 8 for Re = 85.5. (c) Raw transient at x / D  = 30 for 
Re = 85.5. 
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Sreenivasan (1990). The comparison is shown in figure lO(a) for seven Reynolds 
numbers and hot-wire locations between ( x / D , y / D )  = (8,l) and (40,l). We note that 
the probe could not be moved closer to the cylinder than 8 0  because of probe 
interference. The data at subcritical Reynolds numbers clearly show that the forcing 
excites a lightly damped global mode which decays everywhere at the same rate. At 
supercritical Reynolds numbers up to Re = 85.5, (T, is also found to be constant all the 
way to x / D  = 30. The same holds true for different transverse locations between 0.5D 
and 2.50 at x / D  = 10 (Schumm 1991). There are, however, limitations to the model 
which manifest themselves far downstream: in the near wake at x / D  = 8 (figure lob) 
the vortex shedding always starts building up immediately after the forcing is turned 
off, but at x / D  = 30 (figure 1Oc) it takes the linear global mode much longer to form 
from the initial disturbance. As a consequence the time during which the global mode 
grows as a whole is shortened to the point where it is no longer possible to extrapolate 
a linear growth rate cry. As the transients grow ever shorter at Re = 91 and 93.5, the 
problem is aggravated and the last reliable data point on figure 10(a) moves upstream. 

5. The wake of a circular cylinder: control by wake heating, base bleed 
and forced transverse oscillations 

5.1. Experimental set-up 

All the experiments with circular cylinders were carried out in the same facility as those 
with the oblong cylinder, except that it was fitted with a rectangular contraction of 
160 x 200 mm instead of the round nozzle and a rectangular test section of 600 mm 
length. All cylinders tested in this set-up had a length L = 200 mm. 

The wake heating for Re > 57 was effected by one or two constantan wires stretched 
parallel to the cylinder and close to its surface near the rear stagnation point, i.e. in the 
recirculation region. In each case it was verified that the unheated wires with diameters 
between 2 % and 10 Yn of D had no influence on the natural vortex shedding. In other 
words, the control cylinder effect of Strykowski & Sreenivasan (1990) was avoided. 
Below Re = 57, D became so small that it was no longer possible to mount a separate 
heating wire and the constantan wire itself served as cylinder. The temperature of the 
recirculation region behind the larger cylinders was measured directly with a small 
platinum thermometer, while in the case of the smaller cylinders it was estimated from 
the known relation between wire temperature and measured wire resistance. The state 
of the wake was in all cases monitored by a hot wire positioned at a location where 
there were no temperature variations. 

Transverse oscillations of the cylinder were excited by two speaker coils 
connected to each of its ends. The tension of the cylinder (D = 1 mm) was adjusted to 
tune the mechanical resonance frequency to the excitation frequency of 1.8 times the 
natural shedding frequency, as in the case of the oblong cylinder. The damping of the 
cylinder, however, remained a problem as the best foam rubber damper could not 
reduce the time constant below 250 ms. Hence the transient experiments were limited 
to Reynolds numbers relatively close to Recr. 

The base bleed, finally, was implemented on a cylinder of D = 4 mm with a slot of 
h = 2 mm, shown on figure 11. The bleed air was supplied from both ends through a 
central tube and a fairly uniform bleeding across the span (within 20 %) was achieved 
by a large flow resistance between the inner tube and the cylinder. Two solenoid valves 
on each end were used to rapidly shut off the base bleed (see also figure 17) and the 
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FIGURE 11. Schematic cross-section of the cylinder with base bleed with D = 4 mm and h = 2 mm. 

volume flow rate Q of the bleed air was measured by a rotameter. This allowed to 
define the base bleed coefficient as 

C b  = Q/(LDU,). (7) 

5.2. Results 

Starting with the control by steady heating, we show on figure 12 that vortex shedding 
can be suppressed by this method up to at least twice the critical Reynolds number, 
based here on the properties of the cold free stream. Figure 12(a) shows the familiar 
bifurcation diagram for the saturation amplitude together with the non-dimensional 
saturation frequency. The measured temperature has been converted here to an 
average density prec of the recirculation region. This was motivated by the analysis of 
Yu & Monkewitz (1990), but we have to point out that the temperature corresponding 
to p,,,/p, = 0.45 is a very high T,,, = 380 "C. Hence the buoyancy driven spanwise 
flow must be considerable, i.e. the Richardson number gL[1 -(prec/p,)]  UL2 based on 
the length of the vertical cylinder is of the order of 5 and the aforementioned analysis 
may not be directly applicable. In figure 12(b) the estimated critical density ratio is 
plotted versus 'cold' Reynolds number. In a rescaled form this graph has been shown 
by Yu & Monkewitz (1990) to follow the boundary between absolute and convective 
instability of the most unstable profile, confirming the theoretical ideas of $2, but 
again, the effect of the likely spanwise thermal convection is unknown. 

Next, we show the effect of base bleed and base suction on figure 13. Since the use 
of suction to destabilize the wake is new, the bifurcation diagrams, i.e. the saturation 
amplitude versus suction rate (negative bleeding rate), is presented in figure 13 (a) for 
the critical Reynolds number Recr M 47 and three subcritical Reynolds numbers. We 
note here that a wake destabilized by suction automatically selects its natural frequency 
which is an advantage of suction over harmonic forcing. All the critical bleed rates are 
compiled on figure 13(b) as a function of Reynolds number. Towards larger Reynolds 
numbers, the bleed coefficient asymptotes toward a value c&. M 12% which is in good 
agreement with the value for the rectangular plate at higher Reynolds number, 
discussed in the following section. It is also consistent with Monkewitz & Nguyen's 
(1987) result that typical inviscid wake profiles become convectively unstable at a bleed 
coefficient of 9 %. On the other side, we find that below Re M 27 it is no longer possible 
to induce self-excited oscillations in the wake by suction. This is consistent with the 
observation of Prandtl & Tietjens (1929) that the pair of recirculation vortices shows 
no antisymmetric oscillations below Re = 20, and the observations of Berger (1964) 
and Nishioka & Sato (1978), that no stable vortex streets could be excited below 
Reynolds numbers of around 20 to 25. We must conclude that around Re z 27 the 
suction has to be so strong that the global mode damping due to non-parallel effects 
overcomes the destabilizing effect of increased reverse flow. 



Self-excited oscillations and their control 35 

1.0 
(b) 

0.8 

b 0.6 
n 

8 

2 
9 ' 0.4 

0.2 

0 
50 60 I0 80 

Re 

o o  0 

FIGURE 12. (a) 0, saturation amplitude and x , frequency at ( x / D , y / D )  = (8,4) behind the circular 
cylinder versus the estimated density p,,, of the recirculation zone for Re = 83. (b) Critical density 
ratio versus Re; the hatching indicates the estimated error. 

The sudden interruption of base bleed, base suction or forced transverse cylinder 
oscillations at 1.8 times the natural shedding frequency are now used to produce 
transients. This is first shown on the smoke-wire visualizations of figures 14 and 15, 
where the smoke wire has been placed far upstream of the cylinder and perpendicular 
to it. Frame 14(a) demonstrates total suppression of vortex shedding with a bleed 
coefficient of 10 YO at Re = 68 (cf. figure 13 b) behind the 4 mm cylinder of figure 11. 
After the bleed air is stopped, one obtains a good impression of the linear global mode 
on frame 14(c) before the standard streakline pattern develops which corresponds to 
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FIGURE 13. (a) Saturation amplitude versus base bleed coefficient for the circular cylinder at different 
Reynolds numbers: 0, Re = 47; 0, Re = 45; A, Re = 3 5 ;  *, Re = 32.  (b) Critical bleed coefficient 
versus Re with the two asymptotes indicated by broken lines. 

the saturated state. Figure 15, on the other hand, demonstrates visually that transverse 
cylinder oscillations with a sufficient amplitude do indeed completely suppress vortex 
shedding (here Re = 56 and the amplitude on frame 15(b) is 0.05D). Finally, the 
coefficients of the SL-equation are deduced in the same manner as for the oblong 
cylinder. The resulting linear growth rate, frequency and Landau constant are 
displayed on figure 16. Numerically we find 

Recr = 46.7f0.3, (8 4 
(8 b) g ,D2/u  = [0.21 &0.005](Re-Rec,), 
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(4 

FIGURE 15. Suppression of vortex shedding behind a circular cylinder at Re = 56 by transverse 
cylinder oscillations. (a) No oscillations. (b) Oscillations at 1.8 times shedding frequency with 
amplitude of 0.05D. The intersection of the light sheet with the cylinder is defined by its shadow. 

a iD2/u  = [33.6+0.3]+[0.64f0.02](Re-Re,,), (8 c) 

lJ1, = - [2.90 f 0.451, 

where the data below Re = 50 have been discarded in figure 16(c). First we note that 
the slope of the growth rate (8b)  is somewhat higher than the value of 0.20 published 
by Provansal et al. (1987) and Strykowski & Sreenivasan (1990). This slight increase 
appears owing to the fact that we have consistently extrapolated growth rates to zero 
amplitudes. The ratio between 0.21 and 0.20 plausibly suggests (see equation (4a)) that 
these authors have determined their growth rates, on average, at an amplitude of 22 YO 
of the saturation amplitude. We also note the excellent agreement on figure 16(a) 
between the data obtained with cylinder oscillations and with base bleed, although for 
historical reasons the latter technique has only been used in a few cases. This improved 
result for the linear growth rate is, within experimental error, identical to the value of 
0.215(Re- Re,,) obtained numerically by Noack & Eckelmann (1994) and is consistent 
with the estimate of z 0.23 (Re- Re,,) from Morzynski & Thiele’s (1993) figure 1. 

The Landau constant (8d)  is close to the value of - 3 ,  published by Sreenivasan et 
al. (1986), but differs somewhat from the numerical result of -3.68 by Noack & 
Eckelmann (1994), which appears difficult to reconcile with the present data. A 
discrepancy with the claim of Provansal et al. (1987) that 1Jlr = 0, on the other hand, 
no longer exists, as their conclusion has since been revised (see the discussion in 
Albarkde & Monkewitz 1992). 

With (4b), results (8 a)-@ d )  can also be combined to yield the saturation frequency. 
After division by (2.n Re) we obtain the Roshko relation for the Strouhal number 

S = f D / U ,  = -3.94/Re+0.199. (9) 

The numerical coefficients can be compared to the values given by Williamson (1989) 
after his equation (6). We find that our values are closer to his three-term than his two- 
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FIGURE 16. Coefficients of the Stuart-Landau equation versus Re for the circular cylinder. 
0, control by cylinder oscillations; a, control by base bleed. 

term fit. Near the bifurcation, where the SL-equation is valid, (9) is indistinguishable 
from Williamson's fits, while it falls only slightly below his universal curve at Re = 100. 
This supports our contention that the transients are not contaminated by three- 
dimensional effects. 
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FIGURE 17. Cross-section and side view of the rectangular plates with: @ plate of D = 4 mm or 
D = 8.6 mm and T / D  = 15; 0 plenum for bleed air; 0 pressure drop; @ elliptic nose for the 
large plate; @ bleed air supply with solenoid valves; @ wind tunnel test section. 

6. The wake of blunt-based flat plates: control by base bleed 
6.1. Experimental set-up 

The third bluff body for this investigation was a rectangular plate with the same chord 
to thickness ratio T / D  = 15 as in the numerical experiments of Hannemann & Oertel 
(1989). Two such models were used, a small one (D = 4 mm) mounted in the same 
facility as the circular cylinder, i.e. with a length of L = 200 mm, and a larger model 
with D = 8.6 mm and L = 1400 mm which was used for Reynolds numbers above lo3. 
The latter was mounted in the large subsonic wind tunnel of the Technical University 
Berlin. which has a cross-section of 1.4 x 2 m2 and a turbulence level of 0.25 %. The 
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plate models are shown in figure 17 with the bleed air plenum and the solenoid valves 
in the supply lines. Also shown is the 3 : 1 elliptical nose that was used on the large plate 
for some of the experiments. As opposed to the cylinder, the bleed slot extended in both 
cases essentially over the entire base of the plates. 

For the acoustic forcing experiments, a woofer of 300 mm diameter was mounted at 
the same streamwise location as the plate trailing edge flush with one side wall of the 
wind tunnel test section, which had a lateral distance of 1 m from the plate. Pressure 
fluctuations were measured by in Bruel & Kjaer microphones (B&K 4135) with 
B&K 2610 amplifiers. 

6.2. Results 
First, the effectiveness of the base bleed on the small plate (D = 4 mm) is again verified 
by measuring the saturation amplitude at ( . x / D , y / D )  = (10,l) as a function of bleed 
coefficient at different Reynolds numbers. The results are plotted on figure 18(a) in the 
form IAlZat(c,) together with the fit (3) which allows us to extrapolate the critical bleed 
rates shown in figure 18 (b).  The comparison with the corresponding figure 13 (b)  for the 
cylinder shows that both data sets can, to a good degree of accuracy, be collapsed onto 
one universal curve if replotted versus the standard supercriticality parameter 
(Re/  Re,.. - I). 

Next, we demonstrate visually in figures 19 and 20 that the onset of vortex shedding 
is indeed two-dimensional as discussed in 92. The visualization is again obtained with 
an upstream smoke wire and the transient started from a laminar state at Re = 200 
with a base bleed of cb = 0.15. Figure 19, to be compared to figure 14, shows on the 
first three frames the development of a ‘ blip’, associated with the mechanical transient 
of the solenoid valves, into a far-wake oscillation. Slightly after the mechanical 
transient the bleed stream comes to a stop and figure 19(d) shows a global mode 
concentrated in the near-wake which then develops into the steady-periodic vortex 
shedding. Plan views are displayed in figure 20 which are, however, not synchronized 
with the frames of figure 19 and represent a different transient. The first three frames 
of figure 20, taken at 200 ms intervals, confirm that the transient remains reasonably 
two-dimensional even at this relatively low aspect ratio of L I D  = 50, while the long- 
time asymptotic state on figure 20(d) is clearly three-dimensional. In a few cases it has 
been verified that, after the two-dimensional saturation (typically 20 periods later for 
the cylinder at Reynolds numbers between 50 and 65), the frequency indeed decreased 
in accord with the results of Williamson (1989) and Eisenlohr & Eckelmann (1989) for 
oblique vortex shedding. 

The results for the linear growth rate are compiled in figure 21. For historical reasons 
- the small plate experiment was designed to be just a preliminary test for the large 
plate - only the linear growth rates have been determined and this mostly by the ‘old’ 
data reduction technique in which no extrapolation to zero amplitude is carried out. 
Hence, the graph shows the typical discontinuity at the critical Reynolds number (cf. 
figure 7b).  However, a few transients were recorded in a form amenable to the new 
complex demodulation and it is those which were fitted by equation ( 2 b )  to yield 

Recr = 135f3, ( 1 0 4  

( l o b )  

On the same graph we also show the numerical results of Hannemann & Oertel(l989) 
for the same plate. While their curve has a slope similar to ( lob ) ,  it is shifted by about 
ARe % 40 towards lower Reynolds numbers. Correspondingly, their critical Reynolds 
number of about 100 is much lower than our experimental Re,,. Consistent with these 

rr,D2/v = [0.083 fO.O04](Re-  Re,,). 
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FIGURE 18. (a) Saturation amplitude squared versus base bleed coefficient for the small plate at 
(x /D,  y / D )  = (4 , l )  and different Reynolds numbers. (b) Critical bleed coefficient versus Re. 

higher numerical growth rates, Hannemann & Oertel also find a critical bleed rate of 
c ~ , ~ ~  = 0.216 at Re = 200 which is almost three times the experimental value of about 
7 %  (cf. figure 18b). We note that the 7 %  are consistent with the results of Wood 
(1964) at higher Reynolds numbers and the stability analysis of Monkewitz & Nguyen 
(1987). No definite explanation for these large discrepancies can be offered, but we 
speculate that the strict two-dimensional nature of the computation might be 
responsible, since the base pressure in the experiment with finite span is certainly higher 
(less negative) than in the numerical simulation. 

The experiments with the large plate ( D  = 8.6 mm) at Reynolds numbers between 
800 and 9000 turned out to be difficult because of problems with the signal to noise 
(S/N) ratio. To improve the situation, the plate was fitted with an elliptic nose of 3 : 1 
aspect ratio, shown in figure 17, which produced a laminar boundary layer at the plate 
trailing edge as evidenced by figure 22(a). For comparison the boundary layer for the 
square leading edge in figure 22(b) is clearly turbulent. The improvement of the S/N 
ratio is documented by the two spectra of the streamwise velocity at ( x / D , y / D )  = 
(5.25,l) shown on figure 22(c). Despite this modification it proved impossible to 
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FIGURE 21. Linear growth rate versus Re for the small plate. 0, v, transients analysed without 
extrapolation to zero amplitude; ., ‘true’ linear growth rates; 0, numerical results of Hannemann 
& Oertel (1989). 

extract useful information from transients as they were too short compared to both the 
time it took to switch off the bleed air and the vortex shedding period. Therefore we 
only present results pertaining to steady limit-cycle amplitudes. 

On figure 23 we show how the turbulent plate wake reacts to increasing base bleed. 
Up to figure 23 (d ) ,  i.e. to 4.9 % bleed, the only effect of bleed is to reduce the noise and 
sharpen the peak which may be interpreted as a relaminarization of the wake. Only 
beyond 5 % bleed the amplitude of vortex shedding is progressively reduced with 
complete suppression at about 7 Yn. We also note the amplitude modulation on figures 
23 (e )  and 23 (f) which is typical of wakes near the onset of vortex shedding where there 
is often competition between shedding at different angles. In our view this constitutes 
strong first evidence that the wake goes through similar stages when the bleed rate is 
increased at constant (turbulent) Reynolds number as when the Reynolds number is 
reduced to its critical value without base bleed. The state of the wake - limit-cycle or 
not - was further investigated by recording its response to external forcing in the 
manner used by Sreenivasan et al. (1989) in a helium jet. As in that case, we find that 
without base bleed the vortex shedding, characterized by the velocity at ( x / D ,  y / D )  = 
(3, I), does not respond to pure tone and broadband acoustic forcing up to a sound 
pressure level of 110 dB, as illustrated by figure 24(a, b). This strongly suggests that 
even at turbulent Reynolds numbers Karman shedding remains a limit-cycle. With 
enough base bleed to suppress vortex shedding, on the other hand, we find a clear 
response as shown on figure 24(c, d )  for the two types of excitation. All the forcing 
experiments are collected in figure 25 which strengthens our point as it shows a range 
of forcing amplitudes over which the response is approximately proportional to the 
input, which indicates that wake oscillations with supercritical base bleed are linearly 
damped. 

Finally, the visualization of figure 26 illustrates at Re = 850 the differences between 
a suppressed state (figure 26a), natural vortex shedding (figure 26 d )  without base bleed 
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FIGURE 22. Boundary-layer profile at the trailing edge of the large plate for (a) elliptical leading edge 
(V, Re = 9000; 0, Re = 3600; 0, Re = 2300) and (b) square leading edge (+, Re = 8500; *, Re = 

2300). (c) Corresponding amplitude spectra at ( x /D ,y /D)  = (5.25,l) and Re = 1900. 

and a suppressed state with acoustic forcing (figure 26e). Figure 26(a) clearly shows the 
suppression in the near wake, while the far-wake instability, which looks like Karman 
shedding but is in fact a convective, noise-sustained instability, cannot be suppressed 
in our facility at this Reynolds number. After the base bleed is turned off, Karman 
shedding starts near the trailing edge in figure 26(h) and then saturates very rapidly 
over only a few cycles. This is to be contrasted with figure 26(e) which shows a case 
with white-noise forcing at an intermediate amplitude corresponding qualitatively to 
figure 24(d) .  
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FIGURE 23. Amplitude spectra (linear scale) and corresponding hot-wire traces at ( x / D ,  y / D )  = ( 3 , l )  
behind the large plate for Re = 2300 and varying base bleed: (a) c, = 0; (b) c,  = 2 Yo ; (c) c, = 4 yo ; 
(d )  c, = 4.9%; (e) c, = 5.2%; (f) c,, = 6.6%. 

7. Conclusions 
With the present experiments we have demonstrated that the concept of weakly 

nonlinear global modes, which is, strictly speaking, only valid very close to the onset 
of vortex shedding, remains useful over a much wider parameter range. The latter 
extends in some cases to values of the supercriticality parameter (P/P, , -  1) of order 
unity, where P is the Reynolds number, the bleed coefficient, etc. The most useful 
feature is thereby the possibility of characterizing the wake dynamics by a single 
amplitude which describes how the global Karman mode evolves as a whole. We have 
presented strong evidence that this view is legitimate. In the process, we have used the 
technique of complex signal demodulation to make the most reliable estimates to date 
of the coefficients of the Stuart-Landau equation, which governs the aforementioned 
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FIGURE 24. Amplitude spectra at ( x / D , y / D )  = (3 , l )  behind the large plate -, without and ---, 
with acoustic forcing. (a)  Re = 6600, c,  = 0 and 98 dB sinusoidal forcing at f =  357 Hz; (h)  
Re = 7000, cb = 0 and 84 dB white noise; ( c )  Re = 6600. c,  > cb,L7 and 98 dB sinusoidal forcing at 
f = 357 Hz; (4 Re = 7000, cb > c ~ , ~ ~  and 84 dB white noise. 
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FIGURE 25. Spectral peaks of figure 24 versus sound pressure level. Symbols as in figure 24; 

-, proportional relationship. 
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FIGURE 26. (a)-(d) Transient in the wake of the large plate (D = 8.6 mm, Re = 850) after switching 
off supercritical base bleed of c, = 20 % (frames are 200 ms apart). (e) State with c, = 20 YO and 
acoustic forcing by white noise. The intersection of the light sheet with the plate trailing edge is 
marked by a black line. 

characteristic amplitude in the wake of an oblong cylinder, a circular cylinder and a 
rectangular plate (only partial results). At the same time we have demonstrated that the 
experimental coefficients of the Stuart-Landau model are independent of the control 
technique, which is used to produce transients. Hence the Stuart-Landau model 
appears useful as a ‘plant model’ for the design of a feedback control system or 
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generally to predict the effect of parameter changes on vortex shedding. While these 
claims are strictly speaking only supported for two-dimensional symmetric bluff 
bodies, we point out that the Stuart-Landau model is generic to supercritical Hopf 
bifurcations (Stuart 1971). Hence, it should remain useful in a much larger class of 
wake flows, including the wakes of asymmetric two-dimensional and three-dimensional 
bodies (e.g. the axisymmetric body in Monkewitz 1993), as long as the flow supports 
unstable global modes, i.e. as long as the local absolute instability in the near-wake is 
not suppressed by, for instance, mean flow asymmetry. 

At this point, the question naturally arises whether it is possible to also obtain our 
measured linear global growth rates and frequencies from the weakly non-parallel 
analysis of Monkewitz et al. (1993). Unfortunately the answer is at present negative. 
The third author (PAM), together with 3. Le Dizks, has made a significant effort in this 
direction, starting from mean velocity profiles computed by Hannemann & Oertel 
(1989) for the wake of a plate and by Morzynski & Thiele (1993) for the cylinder wake. 
Despite distinct maxima of the local absolute growth rates in the recirculation region, 
the saddle points of the complex absolute frequency, which, according to the analysis, 
govern the global behaviour in doubly infinite media, were in both cases found to be 
too far from the real x-axis. As a consequence, the stability properties, which are only 
available on the real, physical axis downstream of the body, could not be analytically 
continued to the saddle point. In other words, the ‘standard’ wake of cylinders and 
rectangular plates appears to fall into a category of ‘mixed’ flows in which global 
modes are influenced by a saddle point of absolute frequency as well as the upstream 
boundary (the bluff body) and hence defy simple analysis. The connection between our 
wake experiments and weakly non-parallel theory is therefore, strictly speaking, only 
conceptual at present. However, there is good hope that a quantitative comparison 
between weakly non-parallel theory and experiments for the wake of a plate with base 
suction will come from C. M. Ho’s laboratory at UCLA in the near future, since with 
sufficient base suction the local velocity profile with the largest back-flow, i.e. the most 
unstable profile, is located at the plate trailing edge. Therefore, the generic analysis for 
a semi-infinite flow domain (Monkewitz et al. 1993), where global modes are 
dominated by the ‘inflow’ boundary, is expected to apply. For our own experiments 
with base suction such a quantitative comparison was not possible for lack of highly 
accurate and complete mean flow data, which could only have been obtained with a 
non-intrusive laser doppler anemometer that was not available at the time. For this 
same reason we have not presented spatial distributions of oscillation amplitudes 
(global mode shapes) either. 

For the future, one of the major challenges is to explain theoretically why these 
concepts of weakly nonlinear stability theory appear to be so ‘unreasonably ’ successful 
in wakes that are relatively far from the primary Hopf bifurcation to KBrmBn vortex 
shedding. 
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